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Transcriptome sequencing experiments include RNA extraction and QC, library construction, purification, library QC and quantitation, as well

as sequencing cluster generation and high through-put sequencing. Each step is important for data quality and quantity, which in turn affect

the data analysis. To ensure the accuracy and reliability of the analysis results, every step is under strict monitoring and quality control. After

mixing libraries based on their effective concentration and the required sequencing data volume, Illumina platform is used for high through-

put sequencing.

Experimental Workflow
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Bioinformatics Workflow
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The transcriptome includes all RNAs a cell transcribes in a certain functional state, including the protein-encoding mRNA and non-coding

RNA. Transcriptome sequencing uses high throughput sequencing platforms to capture and sequence the entire mRNA pool of specific

tissues or cells at a given time, and therefore to obtain almost all the transcript information of a specific species or organ in a certain state.

Transcriptome studies, which has been greatly facilitated by next generation sequencing, has transformed gene functional and structural

research and has been used widely in basic research, clinical diagnosis and drug development. Text_2 = Bioinformatics analysis is

performed after obtaining the original sequence data (Pass Filter Data). The workflow of the analysis is summarized in the Figure 2.1.

Figure 2.1 Transcriptome data analysis workflow

Bioinformatics Workflow
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3.1 Raw data

Sample information and group information.

Table 3.1.1 Sample list.

SampleName SampleName SampleName SampleName

Sample1-1 Sample2-1 Sample1-2 Sample2-2

Sample1-3 Sample2-3

Table 3.1.2 Group information.

Control Group Sample List Experimental Group Sample List

Sample1 Sample1-1,Sample1-2,Sample1-3 Sample2 Sample2-1,Sample2-2,Sample2-3

Column explain:

(1) Control Group: control group

(2) Sample List: control sample list

(3) Experimental Group: experimental group

(4) sample List: experimental sample list

Bcl2fastq (v2.17.1.14) was used to processed the original image data for base calling and preliminary quality analysis. The Illumina built-in

software determines whether to keep or discard each of the sequencing fragments (namely reads) based on the quality of the first 25 bases.

The raw data (Pass Filter Data) obtained from this step is stored in FASTQ format, which contains the base sequence (the second line of a

FASTQ record) and the corresponding sequencing quality information (the fourth line of a FASTQ record).

In FASTQ format, each sequence contains four lines of information as shown below:

@GWZHISEQ01:289:C3Y96ACXX:6:1101:1704:2425 1:N:0:GGCTAC

GCTCTTTGCCCTTCTCGTCGAAAATTGTCTCCTCATTCGAAACTTCTCTGT

+

@@CFFFDEHHHHFIJJJ@FHGIIIEHIIJBHHHIJJEGIIJJIGHIGHCCF

The first and third lines contain sequence identifier information produced by the sequencer (some fastq files omit name information and

leaves it empty after the “+”sign on the third line to save space). The second line contains the sequence information. The fourth line depicts

the quality information of each corresponding base on the second line. The fourth line contains sequence quality information, and the quality

score is the ASCII value of the corresponding character minus 33. For example, the ASCII value of '@' is 64, and therefore the

corresponding base quality score is 31 (64-33). Starting with Illumina GA Pipeline v1.8 (currently v1.9), base quality scores range from 0 to

41.

Table 3.1.3 Explanation of the components in the sequence identifiers (including in the first line of fastq format)

Analysis Result
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Type Description

GWZHISEQ01 Unique instrument name

289 Run ID

C3Y96ACXX Flowcell ID

6 Flowcell lane

1101 Tile number within the flowcell lane

1704 'x'-coordinate of the cluster within the tile

2424 'y'-coordinate of the cluster within the tile

1 Member of a pair, 1 or 2 (paired-end or mate-pair reads only)

N Y if the read fails filter (read is bad), N otherwise

0 0 when none of the control bits are on, otherwise it is an even number

GGCTAC Index sequence

3.2 Sequencing data quality assessment

3.2.1 Sequencing data quality analysis

Sequencing base quality is affected by sequencer, reagents, samples and other factors. The first few bases from the 5'-end are usually of

higher error rate and the error rate drops afterward. With long read sequencing platforms (e.g. 150+bp), sequencing error rate might rise

again close to the 3' end. Since the first six bases usually have a higher than average error rate, and this is also the length of the random

primer, it is suggested that the high error rate is due to the annealing between imperfectly matched primers and template (Jiang et al.).

Statistics of sequencing error rate across all base positions can be used to identify abnormally high error rates. For example, it would raise

concern if the base error rate in the middle of the sequence is significantly higher than that of the positions towards the end. In general, the

sequencing error rate for each base position is less than 0.5%. An error in the sequence is indicated by letter ‘e’. The base quality scores of

Illumina sequencing platforms are expressed in QPhred. The formula to calculate QPhred based on error rate is:

Formula: Qphred　=　-10log10(e)

Table 3.2.1.1 The correlation between Illumina Bcl2fastq base call error rate and Qphred scores is as follows:

Phred Quality Score Probability of Incorrect Base Call Base Call Accuracy

10 1 in 10 90%

20 1 in 100 99%

30 1 in 1000 99.9%

40 1 in 10000 99.99%

50 1 in 100000 100%

Quality assessment of the sequencing data was evaluated using FastQC (v0.10.1).
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Figure 3.2.1.1 Quality scores across all bases X axis: base position in reads. Y axis: quality score. The higher the score the more reliable

the base calling is. In general, if the base quality value is 13, the error rate is 5%, if the quality value is 20, the error rate is 1%, if the quality

value is 30, the error rate is 0.1%.

Figure 3.2.1.2 Quality score distribution overall sequences. X axis: the average value of the quality score of the corresponding base. Y axis:

the number of sequences. In general, if the peak of the average value is greater than 30 is an indication of high quality.
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Figure 3.2.1.3 Sequence ATCG content distribution across all bases. This is used to determine whether there is difference in the percentage

of A/T and G/C. X axis: base position in reads. Y axis: the percentage of each single base (ATCG) at the corresponding position.

3.2.2 Data Filtering

During sequencing, quality concerns may arise. A small number of target sequences might be reads into adapter sequences, and bases

toward the 3'-end might have low quality due to the lengthy sequencing cycles. To eliminate the negative effect of these technical issues,

low-quality reads and contaminations were filtered out before data analysis. In addition, adapter sequences were removed at this step.

Software: Cutadapt (version 1.9.1)

Method description:

(1) remove the adapter sequences

(2) remove the 5' or 3' end bases that contains N’s or of quality values below 20 

(3) remove reads that are less than 75 bp long after trimming

The statistics of raw data are in Table 3.2.2.1.

Table 3.2.2.1 Raw data statistics

Sample length Reads Bases Q20 (%) Q30 (%) GC (%) N (ppm)

Sample1-1 150.00 52792600 7918890000 97.46 94.01 51.93 43.73

Sample2-1 150.00 53795532 8069329800 97.57 94.32 51.67 46.35

Sample1-2 150.00 49022754 7353413100 97.52 94.22 51.92 45.84

Sample2-2 150.00 55493200 8323980000 97.54 94.26 51.72 46.25

Sample1-3 150.00 55743832 8361574800 97.59 94.33 51.75 45.23

Sample2-3 150.00 61756336 9263450400 97.82 94.84 51.68 43.20

The statistics of processed data are in Table 3.2.2.2.

Table 3.2.2.2 Filtered data statistics
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Sample length Reads Bases Q20 (%) Q30 (%) GC (%) N (ppm)

Sample1-1 148.17 52379256 7760931714 97.80 94.47 52.00 7.33

Sample2-1 148.23 53366960 7910802955 97.92 94.78 51.74 7.53

Sample1-2 148.12 48623220 7201898080 97.88 94.69 52.00 7.57

Sample2-2 148.10 55054404 8153437796 97.89 94.72 51.80 7.51

Sample1-3 148.29 55309086 8201996566 97.91 94.78 51.83 7.44

Sample2-3 148.18 61301206 9083835489 98.16 95.30 51.77 2.55

Column explain:

(1) Sample: Sample name

(2) length: Average read length

(3) Reads: Number of reads

(4) Bases: Number of bases

(5) Q20, Q30: The percentage of bases with quality scores (Qphred) higher than 20 or 30

(6) GC%: The percentage of G+C in the read

(7) N(ppm): The number of base 'N' per million bases

3.3 Alignment to a reference genome

3.3.1 Aligning the clean data to the reference genome

Filtered data were subsequently aligned to the reference genome. It is important to select the appropriate reference genome for optimal

analysis. The alignment rate reflects the compatibility between the selected genome and data to be analyzed.

Short-read alignment was performed using Hisat2 (v2.0.1) (Nat Methods. 2015 Apr; Kim D, et al.) with default parameters.

Reference genome and annotation files

Table 3.3.1.1 Data alignment statistics

Samples Total

reads

Total mapped Multiple

mapped

Uniquely

mapped

Read1 Read2 Reads

map to '+'

Reads

map to '-'

Non_splice

reads

Splice

reads

Reads mapped in

proper pairs

Sample1-

1

52379256 47468697

(90.625%)

4431804

(8.46099%)

43036893

(82.164%)

21888612 21148281 21542789 21494104 25030486 18006407 41061578

Sample1-

2

48623220 44312083

(91.1336%)

4148482

(8.53189%)

40163601

(82.6017%)

20415925 19747676 20107932 20055669 23635293 16528308 38410348

Sample1-

3

55309086 50531781

(91.3625%)

4643956

(8.39637%)

45887825

(82.9662%)

23323125 22564700 22967657 22920168 26052405 19835420 43823418

Sample2-

1

53366960 48434183

(90.7569%)

4562851

(8.54995%)

43871332

(82.2069%)

22292573 21578759 21954375 21916957 25517804 18353528 42003456

Sample2-

2

55054404 50139522

(91.0727%)

4761139

(8.64806%)

45378383

(82.4246%)

23061817 22316566 22710287 22668096 26824423 18553960 43387224

Sample2-

3

61301206 56222670

(91.7154%)

5472138

(8.92664%)

50750532

(82.7888%)

25659057 25091475 25397953 25352579 31225227 19525305 48706922

Column explain:

(1) Total reads: number of the total reads that passed the filtering step

(2) Total mapped: number of reads that were successfully aligned to the reference. In general, this number should be greater than 70%

given that there is no contamination and an appropriate reference was selected

(3) Multiple mapped: the number of sequences with multiple alignment positions on the reference. This value is generally less than 10%

(4) Uniquely mapped: number of sequences with only one alignment positions on the reference

(5) Reads map to '+'，Reads map to '-': number of sequences mapped to the plus / minus strand of the reference

(6) Splice reads: number of reads mapped to more than one exon (also known as junction reads). Non-splice reads: number of reads

mapped to only one exon. The percentage of splice reads is determinedly partly by the length of sequencing reads
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(7) Reads mapped in proper pairs: In paired-end sequencing, the number of sequence pairs with proper alignment to the reference

evaluated by the alignment direction and location

3.3.2 Distribution of reads in the reference genome

Mapped reads were assigned to genomic features – exons, introns and intergenic regions. Sequences located in the intron region may be

due to immature mRNA contamination or incomplete genomic annotation, whereas sequences mapped to intergenic region may be due to

incomplete genomic annotations and background noise.

Figure 3.3.2.1 The distribution of reads in different genomic regions

3.3.3 Read density distribution on the chromosomes

Read density on each chromosome is calculated as the log2 values of read counts in 1kb windows and is illustrated in Figure 3.3.3.1.

Normally, the longer the chromosome is, the more the total read count mapping to the chromosome (Marquez et al.). The homogeneity of

the sequencing can be assessed from the relationship between read count and chromosome length.
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Figure 3.3.3.1 Read depth (log2) across chromosome, the abscissa is the length of the chromosome.

3.3.4 Visualization of the alignment results

For data visualization, we provide the bam files of RNA-seq alignment, and recommend to use IGV (Integrative Genomics Viewer) browser

to visualize the bam files. IGV browsers can display the abundance of reads to reflect the level of transcriptional activity.

IGV download

IGV manual

IGV application instruction:

(1) To upload reference genome: Select Genomes -> Load Genome From File. If you are to use a widely-studied genome such as human

genome, you could directly select the reference genome from the drop-down list. For references not listed, the customer can download the

references from the link we provided and go to File -> Load to upload the genome.

(2) Upload alignment files in bam format: Select File -> Load From File, and then upload bam files in desired order. 

(3) To view the results, select the reference genome of interest from the second menu on the toolbar of the IGV interface. The result in the

genome browser is as follows:

GENEWIZ | Solid science. Superior service.
www.genewiz.com



Figure 3.3.4.1 Snapshot of IGV browser interface

3.4 Alternative splicing analysis

Alternative splicing allows a single gene to produce multiple mRNA transcripts, and different mRNA transcripts are translated into different

forms of proteins to increase diversity (Black, 2003; Stamm, 2005; Lareau, 2004). Although alternative splicing is known to be prevalent in

eukaryotes, its scope and significance may still be underestimated. Recently, alternative splicing studies based on high-throughput

sequencing have been published from human (Pan, 2008；Wang, 2008；Sultan, 2008), mouse (Tang, 2009; Mortazavi, 2008), and

Arabidopsis (Filichkin) studies, resulting in the discovery of novel alternative splicing events.

We use StringTie (v1.3.3b) (Nature Biotechnology 2015; Pertea M, et al.) to do Assembly and predict alternative splicing and ASprofile

(V1.0.4) for classification and quantification. The classification categorization of alternative by ASprofile is shown below:
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Figure 3.4.1 Basic alternative splicing categories: (A) SKIP, MSKIP (B) IR, MIR (C) AE (D) TSS (E) TTS. The site of alternative splicing is in

red.

(A) SKIP: Skipped exon (SKIP_ON,SKIP_OFF pair) 

     XSKIP: Approximate SKIP (XSKIP_ON,XSKIP_OFF pair) 

     MSKIP: Multi-exon SKIP (MSKIP_ON,MSKIP_OFF pair) 

     XMSKIP: Approximate MSKIP (XMSKIP_ON,XMSKIP_OFF pair) 

(B) IR: intron retention (IR_ON, IR_OFF pair) 

     XIR: Approximate IR (XIR_ON, XIR_OFF pair) 

     MIR: Multi-IR (MIR_ON, MIR_OFF pair) 

     XMIR: Approximate MIR (XMIR_ON, XMIR_OFF pair) 

(C) AE: Alternative exon ends (5', 3', or both) 

     XAE: Approximate AE 

(D) TSS: Alternative 5' first exon (transcription start site) 

(E) TTS: Alternative 3' last exon (transcription terminal site) 

3.4.1 Alternative splicing classification and quantification
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Figure 3.4.1.1 Statistic summary of alternative splicing events of each sample. X axis: number of splicing events. Y axis: types of splicing.

3.4.2 Alternative splicing annotation

Table 3.4.2.1 AS annotation and quantification (Partial results are shown. For complete results please see: *.anno.fpkm.xls)

event_id event_type gene_id chrom event_start event_end event_pattern strand fpkm ref_id

1000065 TSS XLOC_000022 1 817371 818202 818202 + 0.3576110000 FAM87B

1000066 TTS XLOC_000022 1 818723 819837 818723 + 0.3576110000 FAM87B

1000068 TSS XLOC_000023 1 827608 827775 827775 + 1.1195810000 LINC01128

1000071 TSS XLOC_000023 1 851348 852110 852110 + 0.0015300000 LINC01128

1000075 SKIP_OFF XLOC_000023 1 847654 847806 829104,851927 + 0.8705390000 LINC01128

Column explain:

(1) event_id: AS event ID

(2) event_type: AS event type (TSS, TTS, SKIP_ {ON , OFF}, XSKIP_ {ON, OFF}, MSKIP_ {ON, OFF}, XMSKIP_ {ON, OFF}, IR_ the ON {,

OFF}, {XIR_ the ON, OFF}, the AE, XAE)

(3) gene_id: gene ID from cuffmerge assembly

(4) chrom: chromosome ID

(5) event_start: AS event starting position

(6) event_end: AS event end position

(7) event_pattern: AS event characteristics (for TSS, TTS - inside boundary of alternative marginal exon; for *SKIP_ON,the coordinates of

the skipped exon(s), for *SKIP_OFF, the coordinates of the enclosing introns, for *IR_ON, the end coordinates of the long, intron-containing

exon, for *IR_OFF, the listing of coordinates of all the exons along the path containing the retained intron, for *AE, the coordinates of the

exon variant)
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(8) strand: reference strand information of the AS event

(9) fpkm: expression of the gene with the corresponding AS type in FPKM

(10) ref_id: corresponding gene ID in the reference (gene annotation)

3.5 Novel transcript prediction

The existing transcript annotation databases may not cover all the genes in the transcriptome. New genes or transcripts can be discovered

by leveraging high-throughput sequencing (Mortazavi, 2008). For that purpose, StringTie (v1.3.3b) (Nature Biotechnology 2015; Pertea M, et

al.) was employed for de novo transcript assembly using the alignment bam files, the result of which was then subject to comparison with

existing annotation reference (gtf file) using Cuffcompare (V2.2.1). This purpose of this workflow is to:

(1) discover novel genes (by comparing to the given annotation reference)

(2) discovered novel exons of existing genes

(3) optimize the boundary of the existing genes

The result of novel gene or exon prediction is in GTF format. For details of GTF format, please see: GTF format.

Table 3.5.1 annotation of novel transcript structure results (Partial results are shown. For complete results please see: *_comp.combined.gtf)

seqname source feature start end score strand frame attributes

1 StringTie exon 131025 134836 . + . gene_id "XLOC_000001"; transcript_id "TCONS_00000001"; exon_number "1"; gene_name "CICP27"; oId

"STRG.11.1"; nearest_ref "ENST00000442987"; class_code "="; tss_id "TSS1";

1 StringTie exon 629062 629433 . + . gene_id "XLOC_000002"; transcript_id "TCONS_00000002"; exon_number "1"; gene_name "MTND1P23"; oId

"STRG.15.1"; nearest_ref "ENST00000416931"; class_code "="; tss_id "TSS2";

1 StringTie exon 629640 630683 . + . gene_id "XLOC_000003"; transcript_id "TCONS_00000003"; exon_number "1"; gene_name "MTND2P28"; oId

"STRG.16.1"; nearest_ref "ENST00000457540"; class_code "="; tss_id "TSS3";

1 StringTie exon 631074 632616 . + . gene_id "XLOC_000004"; transcript_id "TCONS_00000004"; exon_number "1"; gene_name "MTCO1P12"; oId

"STRG.17.1"; nearest_ref "ENST00000414273"; class_code "="; tss_id "TSS4";

1 StringTie exon 632757 633438 . + . gene_id "XLOC_000005"; transcript_id "TCONS_00000005"; exon_number "1"; gene_name "MTCO2P12"; oId

"STRG.18.1"; nearest_ref "ENST00000427426"; class_code "="; tss_id "TSS5";

Column explain:

(1) seqname: name of the chromosome or scaffold, chromosome names can be given with or without the 'chr' prefix

(2) source: name of the program that generated this feature, or the data source (database or project name)

(3) feature: feature type name, e.g. Gene, Variation, Similarity

(4) start: Start position of the feature, with sequence numbering starting at 1

(5) end: End position of the feature, with sequence numbering starting at 1

(6) score: A floating point value

(7) strand: defined as + (forward) or - (reverse)

(8) frame: One of '0', '1' or '2'. '0' indicates that the first base of the feature is the first base of a codon, '1' that the second base is the first

base of a codon, and so on

(9) attributes: A semicolon-separated list of tag-value pairs, providing additional information about each feature

Table 3.5.2 Structure optimization of existing genes (Partial results are shown. For complete results please see: *_novel.xls)

Gene_id Chromosome Strand Original_span Assembled_span

XLOC_000007 1 + MTATP6P1: 633696-634376 633535-634922

XLOC_000007 1 + MTATP8P1: 633535-633741 633535-634922

XLOC_000007 1 + MTCO3P12: 634376-634922 633535-634922

XLOC_000008 1 + AL669831.7: 781937-782050 778770-810060

XLOC_000009 1 + FAM87B: 817371-819837 817371-820116

Column explain:

(1) Gene_id: gene ID

(2) Chromosome: chromosome ID
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(3) Strand: reference strand information

(4) Original_span: gene and its start position - end position according to the original reference

(5) Assembled_span: gene start position - end position according to the novel assembly

3.6 SNV and InDel analysis

3.6.1 SNV and InDel analysis

Samtools (v0.1.19) was used for mpileup to compare each sample with the reference genome for SNV detection. Annovar (v2016.05.11)

was then used for annotation. Correlation between mutation information and gene information can be derived based on the annotated gene

information in the database, enabling annotation of the mutation site. Information including amino acid level mutation and mutation

frequencies is shown in Table 3.6.1.1.

The dbSNP database (version 147), one of the NCBI databases, includes all the SNV and InDel information that have been reported (note:

the annotated results should be viewed in the same version of the database).

The 1000 genome database (version 1000g2015aug) records information about the frequency of mutations at the relevant mutation sites.

Table 3.6.1.1 SNV analysis (Partial results are shown. For complete results please see: All.xls)

Type Chr Start END Ref Obs Func Gene ExonicFunc AAChange 1000genome dbsnp Sample1-

1/(hom/het)

Qual Depth Freq

SNV CHR_HG30_PATCH 179617537 179617537 A G intergenic . . . . . - - - -

SNV CHR_HG30_PATCH 179617607 179617607 C G intergenic . . . . . - - - -

SNV CHR_HG30_PATCH 179621710 179621710 G A intergenic . . . . . hom . 19 1.00

SNV CHR_HG30_PATCH 179623896 179623896 G A intergenic . . . . . - - - -

SNV CHR_HSCHR1_2_CTG31 155248423 155248423 T C intergenic . . . . . - - - -

Column explain:

(1) Type: point mutation classification (SNV / InDel)

(2) Chr: chromosome ID

(3) Start: starting position

(4) End: end position

(5) Ref: reference base

(6) Obs: mutant base

(7) Func: functional classification

(8) Gene: gene name corresponding to functional classification

(9) ExonicFunc: functional classification of exon mutation 

(10) AAChange: nucleotide and amino acid mutation information (NCBI SEQ ID NO: mutation : amino acid mutation)

(11) 1000genome: mutation frequency according to 1000genome database

(12) dbsnp: SNP annotation database ID

(13) Sample*: sample information, four elements:

        ---hom/het mutation type (homozygous or heterozygous )

        ---Qual ---quality

        ---Depth base depth

        ---Freq mutation frequency

AAChange Example Description:

Table 3.6.1.2
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SNV example NM_177987:c.G729A:p.P243P

NM_177987 Gene marking

c. chromosome ID

G reference base

729 position in gene

A mutant base

p. peptide

P reference amino acid

243 amino acid position in peptide

P mutant amino acid

Table 3.6.1.3
InDel example NM_014696:c.720_721insATGAGGGAG:p.E240delinsEMRE

NM_014696 gene marking

c. chromosome ID

720_721 bases insert between 720 and 721

ins insert

p. peptide

E240 amino acid MRE insert after amino acid E at position 240 of peptide

delins insert

EMRE amino acid changes situation after insertion

3.6.2 Genomic distribution of SNV / InDel

Based on the annotation information in the reference genome, the distribution of SNV / InDel events in genomic compartments is

summarized in Table below.

Table 3.6.2.1 SNV / InDel genomic distribution

Sample Sample1-1 Sample2-1 Sample1-2 Sample2-2 Sample1-3 Sample2-3

exonic 6602 7244 6325 7022 7352 6439

intergenic 2050 2198 1884 2196 2030 2484

intronic 3588 4379 3085 4131 4090 4171

splicing 102 106 81 99 98 88

exonic;splicing 8 9 8 10 8 7

ncRNA_exonic 937 897 871 898 971 994

ncRNA_intronic 842 911 754 870 893 910

ncRNA_splicing 3 3 2 2 2 3

ncRNA_UTR3 0 0 0 0 0 0

ncRNA_UTR5 0 0 0 0 0 0

upstream 127 192 114 157 172 168

downstream 450 500 418 505 527 573

upstream;downstream 13 19 13 15 16 20

UTR3 10866 11353 10444 11290 11506 11342

UTR5 1022 1193 975 1137 1221 1013

UTR5;UTR3 4 5 4 6 4 6

Total 26614 29009 24978 28338 28890 28218

Column explain:

(1) Sample: sample name

(2) exonic: exon region

(3) intergenic: intergenic region
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(4) intronic: intron

(5) splicing: splice site

(6) exonic;splicing: exon; splice site

(7) ncRNA_exonic: ncRNA exon region

(8) ncRNA_intronic: ncRNA intron

(9) ncRNA_splicing: ncRNA splicing site

(10) ncRNA_UTR3: 3' UTR of ncRNA

(11) ncRNA_UTR5: 5' UTR of ncRNA

(12) upstream: gene upstream region

(13) downstream: gene downstream region

(14) upstream;downstream: gene upstream region; other gene downstream region

(15) UTR3: gene 3' UTR region

(16) UTR5: gene 5' UTR region

(17) UTR5;UTR3: gene 5' UTR region; 3' UTR of other genes 

(18) Total: Total number of mutations

SNV / InDel distribution across all functional regions is illustrated in the pie chart as below:

Figure 3.6.2.1 SNV / InDel genomic distribution

3.7 Gene expression analysis

The level of gene expression is measured by read density, the higher the read density, the higher the level of gene expression. Gene

expression calculation was performed with the formula below, which calculates FPKM (Fragments per kilo bases per million reads) based on

read counts from HT-seq (V 0.6.1) (Mortazavi, 2008).

The formula is:
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Figure 3.7.1

The ratio of (total exon fragments / mapped reads [millions]) is the read count mapped to the gene normalized to total read counts. The value

is then normalized to gene length (exon length [KB]), so that the expression of genes with different sequencing depths and length are

comparable.

The numbers of genes with different expression levels are summarized in Table 3.7.1. In general, FPKM threshold for gene expression is set

between 0.1-1, although there is no absolute standard and various thresholds have been used in the literature.

Table 3.7.1 Distribution of genes expression levels

Sample 0-0.1 0.1-1 1-3 3-15 15-60 >60

Sample1-1 4511(19.92%) 7341(32.42%) 3691(16.30%) 4916(21.71%) 1637(7.23%) 545(2.41%)

Sample2-1 4721(20.58%) 7234(31.53%) 3710(16.17%) 5000(21.79%) 1723(7.51%) 556(2.42%)

Sample1-2 4346(19.38%) 7291(32.51%) 3742(16.69%) 4844(21.60%) 1638(7.30%) 565(2.52%)

Sample2-2 4703(20.61%) 7230(31.69%) 3648(15.99%) 4916(21.55%) 1739(7.62%) 578(2.53%)

Sample1-3 4835(20.79%) 7485(32.18%) 3736(16.06%) 5052(21.72%) 1617(6.95%) 534(2.30%)

Sample2-3 5076(21.92%) 7314(31.59%) 3645(15.74%) 4754(20.53%) 1750(7.56%) 616(2.66%)

Table 3.7.2 Gene expression results across all samples (Partial results are shown. For complete results please see: all.fpkm_anno.xls)

gene_id Exonic.gene.sizes Sample1-

1

Sample1-

1_FPKM

Sample2-

1

Sample2-

1_FPKM

Sample1-

2

Sample1-

2_FPKM

Sample2-

2

Sample2-

2_FPKM

Sample1-

3

Sample1-

3_FPKM

Sample2-

3

Sample2-

3_FPKM

ENSG00000000003 4535 450 5.17 435 4.91 427 5.24 417 4.55 550 5.93 484 4.72

ENSG00000000005 1610 4 0.13 7 0.22 3 0.10 1 0.03 3 0.09 6 0.16

ENSG00000000419 1207 801 34.57 855 36.26 754 34.80 818 33.57 854 34.58 1018 37.31

ENSG00000000457 6883 252 1.91 404 3.00 218 1.76 371 2.67 289 2.05 431 2.77

ENSG00000000460 5967 33 0.29 41 0.35 28 0.26 47 0.39 50 0.41 53 0.39

Column explain:

(1) gene_id: gene ID

(2) Exonic.gene.sizes:exon length

(3) Sample:count count of each gene

(4) Sample_FPKM: FPKM of each gene

(5-8) Chr，Start，End，Strand: gene location, including chromosome, start position, end position and strand

(9) GeneSymbol: gene symbol
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(10) Description: gene description

(11-13) GO_BP,GO_CC,GO_MF: gene ontology, including biological process, cellular component and molecular function

3.8 RNA-seq overall quality assessment

3.8.1 Quantitative saturation curve

The quality saturation curve gives a good indication of the amount of data required to quantify gene expression. The higher the expression of

the gene, the fewer reads it needs for quantification. On the other hand, the lower the expression, the more reads it requires for accurate

quantification. RSeQC (V2.6.3) was used to generate saturation curves. RPKM at each sequencing depths were calculated and compared to

the real RPKM. The accuracy of the gene expression was evaluated by the percent relative error using the following formula:

Figure 3.8.1.1

RPKMobs is the RPKM calculated using the read count at the corresponding sampling percentage. RPKMReal is the real RPKM from gene

expression analysis.

Figure 3.8.1.2 Percent error rate saturation curve. X axis: percentage of sampling reads. Y axis: Percent relative error. Q1 is a saturation

box plot with transcript expression levels below 25%, Q2 is a saturation box plot with transcript expression levels between 25% and 50%, Q3

is a saturation box plot with transcript expression levels between 50%, and 75% Q4 is the saturation box plot of transcript expression levels

above 75%.

3.8.2 RNA-Seq correlation examination

Biological duplication has two main purposes – one is to prove that the biological experiments are repeatable with reasonable variation, and

the other is for subsequent differential gene expression analysis. The correlation of gene expression between samples is an important index
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of the reliability of experiment. Pearson correlation is a correlation coefficient that indicates the degree of linear relationship between two

variables. The greater the absolute value (ranging between 0 and 1), the stronger the linear relationship. Normally R^2 greater than 0.8 is

seen as reasonable. Otherwise, further explanation is needed or the experiment needs to be repeated. In this section, we also calculated

spearman rank correlation coefficient and kendall-tau rank correlation coefficient for your reference.

Figure 3.8.2.1 RNA-Seq correlation examination

R^2:pearson correlation; rho:spearman rank correlation; tau:kendall-tau rank correlation.

3.8.3 Sequencing homogeneity examination

Ideally, RNAseq reads are independently sampled and uniformly distributed across the transcriptome. However, many studies have

identified factors that may affect read distribution (Dohm et al., 2008). For example, fragmentation and RNA reverse transcription during

library construction may result in severe 3 'bias in RNA-seq results. Other factors including differences in GC content, random primer, RNA

degradation also result in uneven coverage. Python script geneBody_coverage.py from RSeQC (V2.6.3) is used to assess sequencing

homogeneity.

The algorithm for homogeneity calculation:

(1) Divide each transcript into 100 bins, from 5 'to 3'

(2) Calculate the average sequencing depth of each bin and normalize to maximum value.
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Figure 3.8.3.1 Read density distribution of transcripts of different lengths. X axis: the percentage of the length of the transcript. Y axis: the

average sequencing depth. Color code is to specify transcripts of different lengths.

3.9 PCA analysis

PCA (Principal Component Analysis) reduces data complexity and is helpful to analyze sample relationship and the scales of the difference.

The basic principle of PCA is to convert the original variables into a new set of independent variables (i.e. the principal components). All

factors are ranked based on significance; minor factors and noise are eliminated, and thereby simplifies the data. Usually diagrams are

made using two or three principal components as axes and conclusions on sample relationships can be drawn based on the distance

between the various samples. Samples of close relationship tend to cluster together. The following figure shows the clustering relationships

between samples:
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Figure 3.9.1 Principal component analysis chart, position the sample representative of the value of each dot on each of the main

components

3.10 Gene differential expression analysis

3.10.1 Gene expression comparison

Expression levels of all genes under different experimental conditions were compared by FPKM profiles.
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Figure 3.10.1.1 Comparison of gene expression levels under different experimental conditions Figure 1: FPKM distribution. X axis:

log10FPKM. Y axis: number of genes in density of each FPKM value. Figure 2: FPKM box plot, X axis: sample names, Y axis: Log10 values

of FPKM. Each of the five elements in each box plot, from top to bottom, specifies the maximum, upper quartile, median, lower quartile and

the minimum value, respectively.

3.10.2 List of differentially expressed genes

The input data for gene differential expression is the read count data obtained from gene expression analysis.
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For samples with biological replicates, gene differential analysis was performed using the Bioconductor package DESeq2 (V1.6.3), which

was based on a model with a negative binomial distribution. If the read count of the ith gene in the jth sample is Kij, then:

Kij ～ NB(µij,αij)

µij=sjqij

log2=xjβi

In special cases, gene differential analysis is performed using the bioconductor package edgeR (V3.4.6).

DESeq2 is used for this analysis.

Table 3.10.2.1 List of differentially expressed genes (Partial results are shown. For complete results please see: *_DE.xls)

gene_id baseMean log2FoldChange lfcSE stat pvalue padj Chr Start End Strand GeneSymbol

ENSG00000085662 7499.22131724389 2.87519660890771 0.0762793904888239 37.6929677922501 0 0 7 134442350 134459284 - AKR1B1

ENSG00000090339 4336.81431701823 4.33511972742747 0.113754123487362 38.1095611704053 0 0 19 10270835 10286615 + ICAM1
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ENSG00000105825 14227.7322883093 3.77388125235295 0.0748764387498663 50.401452250688 0 0 7 93885397 93890991 - TFPI2

gene_id baseMean log2FoldChange lfcSE stat pvalue padj Chr Start End Strand GeneSymbol
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ENSG00000108691 17364.4634728589 4.3723697719581 0.09288599819695 47.0724313333769 0 0 17 34255218 34257203 + CCL2

gene_id baseMean log2FoldChange lfcSE stat pvalue padj Chr Start End Strand GeneSymbol
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ENSG00000111331 3557.6827636357 4.49448039093373 0.114589304546654 39.2225121595344 0 0 12 112938352 112973249 + OAS3

gene_id baseMean log2FoldChange lfcSE stat pvalue padj Chr Start End Strand GeneSymbol

Column explain:

(1) gene_id: gene ID

(2) baseMean: the average of the normalized count values, dividing by size factors

(3) log2FoldChange: the effect size estimate

(4) lfcSE: the standard error estimate for the log2 fold change estimate

(5) stat: Wald test

(6) pval: calculated probability

(7) padj: p-value adjusted for multiple testing using Benjamini-Hochberg to estimate the false discovery rate

(8-11) Chr, Start, End, Strand: gene location, including chromosome, start position, end position and strand

(12) GeneSymbol: gene symbol

(13) Description: gene description

(14-16) GO_BP,GO_CC,GO_MF: gene ontology, including biological process,cellular component and molecular function

3.10.3 Determination of differentially expressed genes

The results from DESeq2 analysis was further analyzed to determine genes with significant differential expression according to the criteria of

fold change greater than 2 and qvalue(fdr, padj) less than 0.05. The number of up- and down-regulated genes are summarized in Table

below.

Table 3.10.3.1 Summary of gene numbers that are significantly up- or down-regulated between groups

Sample-VS-Sample UPs Down

Sample1-VS-Sample2 875 401
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Figure 3.10.3.1 Bar graph of genes significantly up- or down-regulation between groups

Figure 3.10.3.2 Differential expression volcano plot, red dots represent genes that are significantly up-regulated and blue dots represent

those that are significantly down-regulated. X axis: log2 fold change of gene expression. Y axis: statistical significance of the differential

expression in log10(qvalue(fdr, padj)).
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3.10.4 Cluster analysis of differentially expressed genes

Clustering analysis is to calculate and classify data according to similarity, so that samples or genes with similar expression patterns can be

grouped together. This can assist to predict the function of unknown genes, and to predict whether they participate in the same metabolic

process or cellular pathway. The FPKM value of different genes under different experimental conditions was taken as the expression level

and used for hierarchical clustering. The most obvious feature of this method is the generation of dendrogram. The regions of different colors

represent different clusters. Genes with similar expression patterns are within the same cluster and close to each other, and they may have

similar functions or participate in the same biological processes.

Figure 3.10.4.1 Cluster analysis of differentially expressed genes

Log10(FPKM + 1) values are used for clustering. Genes of high expressed are in red, and low expression in blue.

3.10.5 Venn diagrams of differentially expressed genes

The Venn diagram shows the number of genes differentially uniquely expressed in each group or differentially expressed in multiple groups.

Venn diagram are generated only when the number of groups is between 2 and 5.

3.11 Differential gene GO enrichment analysis

Gene Ontology (GO, Gene Ontology database) is an international standardized gene classification system, which provides a set of

dynamically updated standard vocabulary to describe the properties of genes and gene products in the organism. GO contains three

ontologies that describe the molecular function, cellular component, and biological process of the gene.

The GO functional enrichment analysis returns the GO terms that are enriched among differentially expressed genes against the genomic

background, and thus provides information on how the differentially expressed genes are related to certain biological functions. The software

we used here is GOSeq(Young et al, 2010), which based on an extensiton of the hypergeometric distribution known as the Wallenius non-

central hyper-geometric distribution. This method is able to account for gene length bias and read counts bias when performing GO analysis.

Threshold for filtering here is: over_represented_pvalue <= 0.05.

3.11.1 List of Differences Gene GO Enrichment
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Table 3.11.1.1 GO enrichment of differentially expressed genes (Partial results are shown. For complete results please see: Sample1-VS-

Sample2.xlsx)

category term ontology numDEInCat numInCat over_represented_pvalue over_represented_FDR GeneNumber(Up) GeneNumber(Down)

GO:0005615 extracellular space CC 124 1056 3.15475155077932E-40 4.2800514289423E-36 100 24

Column explain:

(1) category: GO term ID

(2) term: description of gene ontology term

(3) ontology: gene ontology(CC: cellular_component; BP: biological_process; MF: molecular_function)

(4) numDEInCat: number of significant differential expression genes in the category

(5) numInCat: number of genes in the category

(6) over_represented_pvalue: pvalue, the smaller, the more significant

(7) over_represented_FDR: pvalue adjust

(8-9) GeneNumber(Up/Down): numbers of up or down reguation genes. These two columns are hyperlinks , which can link to their own

significant differential expression genes

3.11.2 DAG of differential gene GO enrichment

Directed Acyclic Graph (DAG) is a graphical representation of the results of enrichment analysis of the differentially expressed genes. The

branch represents the inclusion relation, and the functional range defined from the top to the bottom is in decreasing order. TopGO is applied

to do the analysis, and generally, the top 5 enriched GO terms were selected as primary nodes of the directed acyclic graphs, and the

associated GO terms are displayed by the inclusion relation. The color scale represents the degree of enrichment. DAG shows the

enrichment of biological processes, molecular functions as well as cellular components.

Figure 3.11.2.1 Directed Acyclic Graph
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The subgraph induced by the top 5 GO terms identified by the classic algorithm for scoring GO terms for enrichment. Boxes indicate the 5

most significant terms. Box color represents the relative significance, ranging from dark red (most significant) to light yellow (least

significant). Black arrows indicate is-a relationships and red arrows part-of relationships.

3.11.3 Histogram of differential gene GO enrichment

The number differentially expressed genes in each GO term is shown in the histogram with the specification of the relevant biological

process, cellular component and molecular function. Shown is the top 30 most prominent GO categories. All the output is shown if the

analysis returns less than 30 outputs.
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Figure 3.11.3.1 Figure 1: GO enrichment histogram. X axis: number of differentially expressed gene in this GO category. Color code is to

distinguish the categories - biological processes, cellular components and molecular functions. Figure 2: GO enrichment pvalue histogram. X

axis: -log10(p-value) of each term. Y axis: siginificant enriched go term.

3.12 DEU analysis

In addition to differential expression analysis of gene levels, differential exon usage (DEU) analysis was also performed to assess differential

expression of exons. DEU analysis is currently the best method for studying alternative exon usage in alternative splicing. DEXSeq was used

for DEU analysis (V1.18.4). DEXSeq uses a generalized linear model to detect the differential expression of genes on exon level. Padjusted

< 0.05 was considered significant during DEU analysis. The exon differential expression result from DEU is shown in Table 3.12.1 and

Figure 3.12.1. In Figure 3.12.1, exons differentially expressed are highlighted in light purple.

This analysis is only for samples with biological duplication. If there is no biological repeat, this analysis is not performed.

Table 3.12.1 DEU gene lists

groupID GeneID featureID exonBaseMean dispersion stat pvalue padj Sample1 Sample2 log2fold_M2.PA_M2.PA.eto

ENSG00000075391:E032 ENSG00000075391 E032 13.3485109 0.007891411 29.23547058 6.41E-

08

0.021770267 8.47910923 17.64304901 -1.057115288

Column explain:

(1) groupID: gene ID and exon ID

(2) GeneID: Gene ID

(3) featureID: exon ID

(4) exonbasemean: average expression after correction

(5) dispersion: statistic deviation 

(6) stat: LRT statistics

(7) pvalue: statistical significance level

(8) padj: adjusted p value by BH 

(9) ctrl: expression values of control group 
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(10) expr: expression values experimental group 

(11) log2fold_ctrl_expr: log2 value of fold difference between control and experimental group 

(12) genomicData.seqnames: chromosome ID

(13) genomicData.start: starting site of the gene

(14) genomicData.end: termination site gene 

(15) genomicData.width: gene length

(16) genomicData.strand: the direction of strand

(17) countData.Sample: read count of each sample 

(18) transcripts: gene transcript ID

Figure 3.12.1 DEU analysis result. Y axis: expression level of each exon of the two sample groups. X axis: corresponding exons. All

transcripts are of different splicing of the same gene. Exons that are differentially expressed are in bright purple.

3.13 PPI analysis

We performed analysis of the differential gene protein interaction network using the STRING protein interaction database (http://string-

db.org/). The STRING database is a system to look for known protein interactions and predicted protein interactions. This interaction

includes both the direct physical interaction and the indirect functional interaction. For species in the database, we extract the target gene set

(such as the differential gene list) from the database to construct the network. For species not included in the database, we first used blastx

to align enriched sequences in target genes to protein sequences of reference species in STRING database, and then construct the

interaction network based on the aligned sequences from the reference species.

We provide differential gene network data files, which can be directly imported into Cytoscape (http://cytoscape.org/) for visualization and

exploration. Users can graph and label the topological properties of the network. For example, the size of a node in an interaction network

graph is proportional to the degree of the node - the more the edges connected to the node, the greater of its degree, and the bigger the

node, and these nodes may be at key positons in the network. The color of the node is related to the clustering coefficient, and the color

gradients from green to red correspond to the values of the aggregation coefficients from low to high. The aggregation coefficient indicates

the connectivity between adjacent nodes of this node - the higher the aggregation coefficient, the better the connectivity between the

adjacent nodes. According to different research purposes and needs, users can also adjust the network map node location and color, label
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expression and perform other analysis. It should be noted that the results obtained by blast cannot guarantee accuracy, and the analysis in

this section is only for preliminary scientific exploration to help users discover candidate genes. After importing the file into the Cytoscape,

the result is as in Figure below.

Table 3.13.1 Differentially expressed gene protein interaction network data (Partial results are shown. For complete results please see:

Sample1-VS-Sample2.interaction.xls)

protein1 protein2 combined_score mode action

ENSP00000000233 ENSP00000211287 190 activation activation

ENSP00000000233 ENSP00000211287 190 binding

ENSP00000000233 ENSP00000211287 190 catalysis

ENSP00000000233 ENSP00000211287 190 inhibition inhibition

ENSP00000000233 ENSP00000211287 190 ptmod

Column explain:

(1) protein1: target gene protein ID

(2) protein2: interacting protein ID

(3) combined_score: combined score 

(4) mode: relationship ("reaction", "expression", "activation", "ptmod"(post-translational modifications), "binding", "catalysis") 

(5) action: type of effect ("inhibition", "activation") 

Figure 3.13.1 PPI example plot

3.14 Gene fusion analysis
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Gene fusion gene refers to the chimeric combination of two or more genes under the control of the same transcriptional regulatory elements

(including promoter, enhancer, ribosome binding sequence, terminator, etc.). The product of a fusion gene is a fusion protein. We used

STAR-Fusion (v1.4.0) to study gene fusion events in the transcriptome. STAR-Fusion identifies fusion gene candidates by the genomic

location of the aligned paired reads. Table 3.14.1 is an illustration of the fusion gene results in a tabular fashion. Figure 3.14.1 shows the

fusion gene of selected by the customer.

Table 3.14.1 Gene fusion analysis result (Partial results are shown. For complete results please see: Sample.star-

fusion.fusion_predictions.abridged)

#FusionName JunctionReadCount SpanningFragCount SpliceType LeftGene LeftBreakpoint RightGene RightBreakpoint

MIPEPP3--

ABHD12

129 0 INCL_NON_REF_SPLICE MIPEPP3^ENSG00000233325.3 chr13:21872464:+ ABHD12^ENSG00000100997.14 chr20:25371382:-

HNRNPUL2--

C11orf49

81 20 ONLY_REF_SPLICE HNRNPUL2^ENSG00000214753.2 chr11:62494091:- C11orf49^ENSG00000149179.9 chr11:47008759:+

HNRNPUL2-

BSCL2--

C11orf49

81 20 ONLY_REF_SPLICE HNRNPUL2-

BSCL2^ENSG00000234857.2

chr11:62494091:- C11orf49^ENSG00000149179.9 chr11:47008759:+

GNB1--NADK 64 31 ONLY_REF_SPLICE GNB1^ENSG00000078369.13 chr1:1822259:- NADK^ENSG00000008130.11 chr1:1696885:-

FSD1L--

SLC44A1

30 3 ONLY_REF_SPLICE FSD1L^ENSG00000106701.7 chr9:108210516:+ SLC44A1^ENSG00000070214.11 chr9:108147703:+

Column explain:

(1) fusionName: name of the fusion as geneA--geneB

(2) JunctionReadCount: number of split RNA-Seq reads that map and define the fusion breakpoin

(3) SpanningFragCount: number of paired-end reads that span the fusion breakpoint but the reads do not directly overlap the breakpoint

(4) SpliceType: category of support at the fusion breakpoint: { ONLY_REF_SPLICE: fusion breakpoint occurs at reference (known) splice

junctions. INCL_NON_REF_SPLICE: fusion breakpoint occurs at a breakpoint that does not involve all reference (known) exon junctions.

NO_JUNCTION_READS_IDENTIFIED: only spanning fragments support the fusion. (Only happen if --min_junction_reads is set to zero) }

(5) LeftGene: identifier of the gene represented by the left section of the fusion transcript

(6) LeftBreakpoint: position of the left fusion breakpoint in the context of the genome

(7) RightGene: identifier of the gene represented by the right section of the fusion transcript

(8) RightBreakpoint: position of the right fusion breakpoint in the context of the genome

(9) LargeAnchorSupport: YES|NO, indicates whether there are at least 25 aligned bases on each side of the fusion breakpoint

(10) FFPM: normalized measure of the quantity of RNA-Seq fragments supporting the fusion event as fusion fragments per total million

RNA-Seq fragments

(11) LeftBreakDinuc: the genomic dinucleotides found at the left breakpoint (putative splice site if splicing is involved)

(12) LeftBreakEntropy: entropy calculation for the 15 bases immediately upstream from the fusion junction

(13) RightBreakDinuc: the genomic dinucleotides found at the right breakpoint (putative splice site if splicing is involved)

(14) RightBreakEntropy: entropy calculation for the 15 bases immediately downstream from the fusion junction

(15) Annots: a simplified annotation for fusion transcript. For human source, the fusion annotation info based on CTAT_HumanFusionLib
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Figure 3.14.1 Gene fusion network diagram. Each line indicates a gene fusion event between the two genes connected by the line.

3.15 RNA editing analysis

RNA editing refers to the process of altering the genetic information on the mRNA level. Specifically, it refers to the deletion, insertion, or

chemical modification of a nucleotide in the mRNA molecule. This type of modification affects the expression of genes, the production of

different amino acids and the formation of open reading frames. In mammalian cells, one mechanism is the hydrolytic deamination at the C6

position of adenosine, which replaces the adenyl-amino group with an oxygen group, converting adenosine to inosine. Since both I and G

are complementary to C in the same manner, this editing changes the coding information of the codon. This type of RNA editing is mediated

by RNA-dependent adenine deaminase. RNA editing analysis was performed using GIREMI(0.3.1).

Table 3.15.1 RNA editing results (Partial results are shown. For complete results please see: Sample.RNAEdit.xls)

chr coordinate gene reference_base upstream_1base downstream_1base major_base major_count tot_count major_ratio MI pvalue_MI estimated_allelic_ratio

10 104500103 Inte A C A A 7 12 0.583333 0.02965 8.952776e-

07

0.5

10 76777359 KAT6B A C A A 9 15 0.6 0.335419 0.00541161 0.623932

10 127599482 FANK1 A T G G 5 6 0.833333 -1 -1 0.61991

10 24644288 KIAA1217 A T G G 8 12 0.666667 0.309097 0.003071077 0.601836

10 76932138 SAMD8 A T G A 6 10 0.6 0.693285 0.5233355 0.5

Column explain:

(1) chr: Name of the chromosome

(2) coordinate: Position of the SNVs in the chromosome (1-based)

(3) gene: Name of the gene harboring this SNV

(4) reference_base: The nucleotide of this SNV in the reference chromosome

(5) upstream_1base: The upstream neighboring nucleotide of this SNV in the reference chromosome
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(6) downstream_1base: The downstream neighboring nucleotide of this SNV in the reference chromosome

(7) major_base: The major nucleotide of the SNV in the RNA-seq data

(8) major_count: Number of reads with the major nucleotide

(9) tot_count: Total number of reads covering this SNV in the RNA-Seq data

(10) major_ratio: The ratio of major nucleotide (major_count/tot_count)

(11) MI: The mutual information of this SNV if a value exists

(12) pvalue_MI: P-value from the MI test if applicable

(13) estimated_allelic_ratio: Estimated allelic ratio of the gene harboring this SNV

(14) RNAE_t: Type of RNA editing or RNA-DNA mismatches (A-to-G, etc)

(15-18) [A, C, G, T]: Numbers of reads with specific nucleotides at this site

(19) ifRNAE: 1: the SNV is predicted as an RNA editing site based on MI analysis. 2: the SNV is predicted as an RNA editing site based on

GLM. 0: the SNV is not predicted as an RNA editing site

Figure 3.15.1 Statistic summary of RNA editing types

3.16 LncRNA prediction analysis

LncRNA is a type of non-coding RNA with a length greater than 200 nt. It does not encode proteins, but has a wide range of regulatory

functions of organisms. Novel transcripts can be discovered from RNA-seq results and potentially novel lncRNA can be identified.

Identification and prediction of lncRNA involves the following steps:
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Figure 3.16.1 lncRNA identification and prediction workflow

3.16.1 Removal of other types of RNAs

The first step of filtering was to remove mRNA, miRNA, tRNA, snoRNA, rRNA and pseudogenes based on annotation provided by UCSC,

Ensembl and GENCODE.

3.16.2 Removal of based on the characteristics of lncRNA

According to the characterization of lncRNA by GENECODE v7, lncRNAs tend to contain two exons and are no less than 200 bp. In addition,

low sequencing coverage is usually associated with higher error rate, and therefore we also removed sequences with low sequencing

coverage. The workflow is as follows:

(1) Filter out transcripts containing only one exon

(2) Filter put transcripts less than 200 bp

(3) Filter out transcripts with read count less than 3

3.16.3 Removal of transcripts containing protein domains

A protein domain is a conserved part of a protein with specific structure and independent function. Different domains of a protein are

encoded by different exons of the gene. Therefore, ORF prediction of all the possible coding regions of transcripts was further used as a

filtering criteria to reduce false-positive lncRNA sequences.

HMMER-3 was used to evaluate all possible open reading frames of transcripts. HMMER-3 aligns all transcripts with possible amino acid

sequences to all known protein family members in the Pfam database to identify protein domains that the transcript may contain. Evalue is

set to the default value (1e-5) and the result is in tab format. The result is shown in Figure 3.16.3.1.
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Figure 3.16.3.1 ORF prediction by hmmsearch

3.16.4 Removal of transcripts with protein-coding potential

CPC (Coding Potential Calculator) was used to predict protein-coding sequences. CPC utilizes the support vector machine algorithm to

establish protein coding potential classification models based on features including the length of peptide chain, amino acid composition,

protein homology, secondary structure and expression. The model predicts all possible translations of the input transcript sequences. Based

on the predicted results, transcripts containing the protein coding potential are filtered out.

3.16.5 lncRNAs Statistics

Subsequently, the structure and sequence information of all lncRNA were summarized in following table:

Table 3.16.5.1
Samples Sequences Bases Min Max Average N50 (A+T)% (C+G)%

Transcript 125775 81178494 201 22166 645.43 847 58.28 41.72

Column explain:

(1) Sequence: number of transcripts

(2) Bases: number of bases of all transcripts

(3) Min/Max/Average: transcript minimum, maximum and average length

(4) N50: transcript N50 value

(5) (A+T)%: percentage of A and T bases

(6) (C+G)%: percentage of C and G bases

3.16.6 lncRNA description and statistical information

3.16.6.1 Classification of known and unknown lncRNAs

We integrated Ensembl, Gencode UCSC databases for the annotation of known lncRNA and employed Cuffcompare for annotation. The

results are as follows:

Figure 3.16.6.1.1 Information on the known and unknown lncRNAs

3.16.6.2 Distribution of lncRNA according to length, exon count and classification
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The length of lncRNA and the number of exons contained in the lncRNA were analyzed. The lncRNA was further divided into three groups

according to their genomic location: intergenic lncRNA, intronic lncRNA, and antisense lncRNA. The number of lncRNAs in each category

was also summarized.

Figure 3.16.6.2.1 LncRNAs length distribution

Figure 3.16.6.2.2 Length distribution of different types of RNA transcripts
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Figure 3.16.6.2.3 Distribution of exon numbers in lncRNAs

Figure 3.16.6.2.4 Distribution of exon numbers in different type of RNA transcripts
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Figure 3.16.6.2.5 Distribution of exon numbers in different types of lncRNAs

3.17 Co-expression network analysis

Gene co-expression refers to the phenomenon that some genes have similar expression profiles. This similarity suggests that they are

regulated by similar factors and mechanisms. Gene co-expression network is a scale-free network in which the nodes represent genes, and

the edges between genes are determined by the expression levels of two related genes. Co-expressed genes are in the same gene co-

expression network. Using the co-expression network, researchers can analyze the gene regulatory activity and identify key regulators of

gene expression. Construction of gene co-expression network is based on gene expression data, which is obtained from gene expression

analysis of the RNA-Seq data. R package WGCNA was used to construct gene co-expression network and the result display was through

Cytoscape. For reliable analysis, we recommend to include at least 15 DGE samples in the analysis.

3.17.1 Construction of co-expression network

Appropriate soft-thresholding was first determined for the construction of scale-free network. Next TOMSimilarity was employed to calculate

the co-expression similarity coefficient between genes to realize the functional connection based on the soft-thresholding and gene

expression information. The schematic diagram is as follows:

Figure 3.17.1.1 Co-expression scale-free network diagram, from the web.

3.17.2 Cluster Analysis for gene expression module identification

Sometimes co-expression networks can be complicated for application due to the large number of genes. Cluster analysis is very helpful to

identify the main effect genes. WGCNA uses unsupervised clustering for gene clustering and classification according to functional similarity.

TOM diagram was generated using TOMplot () as shown below:

In the figure below, different modules are represented by different color codes. A module is defined as a set of genes with similar expression

patterns. If certain genes always have a similar trend of expressional regulation in a physiological process or in different tissues, it is
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reasonable to assume that these genes are functionally related and they are classified into one module. The biological meaning of each

gene expression model is further explored using GO and biological pathway analysis.

Figure 3.17.2.1 Cluster analysis heatmap the map above and to the left are the phylogenetic trees of the transcriptome, different modules

are represented by different color code. Each cross point indicates the relationship of a particular gene with others. The brighter the point,

the stronger the relationship.

3.17.3 Core module selection

3.17.3.1 Module feature gene selection

To facilitate the correlation analysis of the module with other data sets such as phenotype information, it is necessary to define a feature

gene in each module. This feature gene can be representative of the module's feature with acceptable degree of information loss. A big

advantage of doing so is to simplify the calculation and obtain results in a timely manner even if dealing with very large amount of data. A co-

expression network is constructed for each module, and the gene at the node is the feature gene of the module.
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Figure 3.17.3.1.1 Gene expression module network diagram

3.17.3.2 Association analysis between gene modules and known biological features

There are different ways to determine the association between gene module and known biological features (1) calculated the eigenvalues of

the gene network / module and the correlation coefficient between the eigenvectors of the module and the phenotype of interest. (2) for the

grouped phenotype data such as disease status, p values of the differential expression of each individual gene in various groups (e.g.

disease group vs control group) is calculated and the gene significance (GS) is defined as log10-transformed p value. Module significance

(MS) is defined as the average GS value of genes in the module. Then MS values are compared. In general, a higher than the average MS

value is an indication of an association between the module and the disease. (3) predict the gene network/module formation based on the

key genes in the networks that have high degrees of connections with other genes.

Based on the biological characteristics of the samples and the gene expression profiles of the modules, correlation coefficient and p value

were calculated and modules with biometric correlations were selected.

3.17.3.4 Function analysis of gene expression modules

Function analysis of gene expression modules was performed using WGCNA and the associated databases. GO and KEGG enrichment was

analyzed to predict the function of each module. Modules enriched in relevant biological functions are selected as the core modules.

3.18 Differential alternative splicing analysis

Alternative splicing allows a single gene to produce multiple mRNA transcripts, and different mRNA transcripts are translated into different

forms of proteins to increase diversity (Black, 2003; Stamm, 2005; Lareau, 2004).

We use rMATS (v3.2.5) to detect alternative splicing event. The classification categorization of alternative by rMATS is shown below:
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Figure 3.18.1 Basic alternative splicing categories

3.18.1 Differential alternative splicing filtering

The results was further analyzed to determine alternative splicing with significant differential expression according to the criteria of

IncLevelDifferenc greater than 0.02 and FDR less than 0.05. The number of alternative splicing categories are summarized in Table below.

Table 3.18.1.1 Differentially alternative splicing statistic

Group A3SS A5SS MXE RI SE

Sample1-VS-Sample2 141 29 46 35 23

3.18.2 Differential alternative splicing results

Differential alternative splicing results are shown in table below.

Table 3.18.2.1 Differential alternative splicing results (Partial results are shown. For complete results please see: *.AS_anno.xls)

GeneID geneSymbol chr strand longExonStart_0base longExonEnd shortES shortEE flankingES flankingEE IC_SAMPLE_1 SC_SAMPLE_1

ENSG00000181163 NPM1 5 + 170819916 170819982 170819917 170819982 170819713 170819820 0 5277

ENSG00000243678 NME1-

NME2

17 + 49248847 49248969 49248865 49248969 49246743 49247410 5282 0

ENSG00000179218 CALR 19 + 13054533 13054704 13054647 13054704 13054026 13054443 6465 127

ENSG00000179218 CALR 19 + 13054530 13054704 13054647 13054704 13054026 13054443 6653 127

ENSG00000179218 CALR 19 + 13054613 13054704 13054647 13054704 13054026 13054443 2386 127

Column explain:

(1) GeneID: Gene ID

(2) geneSymbol: Gene symbol

(3) chr: Chromosome ID

(4) strand: reference strand information of the AS event

(5) longExonStart_0base: start of the long exon (0-base)
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(6) longExonEnd: end of the long exon(1-base)

(7) shortES: start of the short exon (0-base)

(8) shortEE: end of the short exon (1-base)

(9) flankingES: start of the flanking exon (0-base)

(10) flankingEE: end of the flanking exon (1-base)

(11) IC_SAMPLE_1: Inclusion junction count for first sample

(12) SC_SAMPLE_1: Skipping junction count for first sample

(13) IC_SAMPLE_2: Inclusion junction count for second sample

(14) SC_SAMPLE_2: Skipping junction count for second sample

(15) IncFormLen: length of inclusion form, used for normalization

(16) SkipFormLen: length of skipping form, used for normalization

(17) PValue: Significance of splicing difference between two sample groups

(18) FDR: False Discovery Rate calculated from p-value

(19) IncLevel1: inclusion level for SAMPLE_1 replicates (semicolon separated) calculated from normalized counts

(20) IncLevel2: inclusion level for SAMPLE_2 replicates (semicolon separated) calculated from normalized counts

(21) IncLevelDifferenc: average(IncLevel1)- average(IncLevel2)

(22) significant: Up/Down regulation，'no' indicates the gene is not significant differential.

rMATS outputs can be converted into sashimiplots shown below by rmats2sashimiplot.

Figure 3.18.2.1 Differentail alternative splicing visualization. Sashimi plot (stand-alone) for alternatively spliced exon and flanking exons in

group samples (colored by experimental condition). Per-base expression is plotted on y-axis of Sashimi plot, genomic coordinates on x-axis,

and mRNA isoforms quantified are shown on bottom (exons in black, introns as lines with arrow heads).

3.19 Short time series gene expression analysis

GENEWIZ | Solid science. Superior service.
www.genewiz.com



The analysis of time series gene expression has enabled insights into development, response to environmental stress, cell cycle

progression, pathogenic infection, cancer, circadian rhythm, and other biomedically important processes. Gene expression is a tightly

regulated spatiotemporal process. Genes with similar expression dynamics have been shown to share biological functions. Clustering

reduces the complexity of a transcriptional response by grouping genes into a small number of response types. Given a set of clusters,

genes are often functionally annotated by assuming guilt by association, sharing sparse functional annotations among genes in the same

cluster. Furthermore, regulatory mechanisms characterizing shared response types can be explored using these clusters by, for example,

comparing sequence motifs or other features within and across clusters.

Short Time-series Expression Miner (STEM) is applied in the analysis, which is for clustering, comparing, and visualizing short time series

gene expression data from experiments (3–8 time points).

Figure 3.19.1 Example of detailed model profile information windows. The window plots a graph of all genes assigned to the profile, the x-

axis scaled to be based on real time and the y-axis to be uniform. The text at top gives information about the profile including the number of

genes assigned, the number of genes expected, and the p-value significance.

Table 3.19.1 STEM result table

gene_id T01 T21 T51 T71 T101 T121 T151

ENSMUSG00000000031 0 0.29 0.65 0.96 0.82 1.54 1.51

ENSMUSG00000000093 0 0.09 0.08 0.66 0.64 1.13 0.97

ENSMUSG00000000094 0 1.08 0 1.08 1.16 2.56 2.23

ENSMUSG00000000120 0 0.62 0.29 0.55 0.53 0.82 1.24

ENSMUSG00000000125 0 1 1 1.09 1.42 1.05 2.14

Column explain:

(1) gene_id: gene id

(2) Sample: expression value after transform of each sample

3.20 GSEA analysis

Gene set enrichment analysis (GESA) is a method to identify classes of genes or proteins that are over-represented in a large set of genes

or proteins, and may have an association with disease phenotypes. The method uses statistical approaches to identify significantly enriched

or depleted groups of genes. Microarray and proteomics results often identify thousands of genes which are used for the analysis. GSEA

analysis steps:

(1) Sorting all genes according to certain indicators. We can pre-sort them manually, for example, according to the P value of the difference

analysis results. The software itself also provides several sorting methods, such as correlation expression with phenotype.

(2) Marking a particular type of gene in a sort, the target gene can be a pathway or a GO term, etc.

(3) Using the weighting method to calculate the change in ES (Enrichment Score) value. If you encounter a identified gene, increase ES, and
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vice versa.

(4) After running the statistics, the ES curve maximum seat can be enrichment score.

(5) Making permutation test， calculating P value and FDR according to enrichment score.

GSEA enrichment result showed below:

Figure 3.20.1 GSEA enrichment map. The top figure shows the increase and decrease curve of the ES value accumulation process, the

middle figure shows the position of the target gene set members in all ordering gene (black vertical line), and the bottom figure shows the

sorted genes from high to low, the true value of the index used for ranking (there is corrected by standard deviation, considering the relative

difference value of genes, the effect is similar to P value).

3.21 Transcription factor analysis

Transcription regulation is an important part of the regulation of gene expression, and transcription factor (TF) regulated gene by combining

gene upstream specific nucleotide sequence.

Plant transcription factor identification was conducted using the plant transcription factor database PlantTFDB4.0 and hmmsearch according

to the pfam file of the transcription factor family.

Animal transcription factor identification was conducted using the animal transcription factor database AnimalTFDB2.0.

TF annotation results are shown below:

Table 3.21.1 TF annotation example

gene_id TF_Family TF_ID

Glyma.10G071700 bZIP Glyma.10G071700.3.p

Glyma.12G116900 C3H Glyma.12G116900.1.p

Glyma.07G038200 AP2 Glyma.07G038200.1.p

Glyma.07G132400 MYB Glyma.07G132400.2.p

Glyma.12G236800 NF-YA Glyma.12G236800.5.p

Column explain:

(1) gene_id: gene id

(2) TF_Family: transcription factor family

(3) TF_ID: transcription factor id
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Appendix
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1 Document description

readme.pdf -- Analysis results directory description

method.pdf -- Experiment and analysis method description

software.pdf -- Analyze the software list

FAQ.pdf -- After sale FAQ document

2 Notes

We suggest the result files be opened with a professional text editor such as Excel or EditPlus.

When opening the report with Internet Explorer, if it returns "for security reasons, Internet Explorer has restricted this page from running

scripts or ActiveX Controls that can access your computer. Click here for options ..." Please select ‘Allow’ to view the report.
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